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CRIStAL, École Centrale de Lille
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Abstract—In this work, the proposed framework for the syn-
chronization of two non identical continuous-time chaotic systems,
based on the use of observer concept and aggregation technique, is
applied, with success. Sufficient conditions for synchronization are
obtained by the use of Borne and Gentina practical criterion for
stabilization study associated to the Benrejeb arrow form matrix
for system description. Application of the proposed approach to
two master-slave Lorenz and Rôssler systems shows the efficiency
of the proposed approach.
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I. INTRODUCTION

The synchronization phenomenon is an interesting and
well-known property of chaotic systems. Since its introduction
by Pecora and Carrol in 1990, [1], chaos synchronization has
attracted increasing interest in both theory and applications, [2]
to [4], as far as several fields are concerned. As a matter
of fact, the synchronization of chaotic systems has been
successfully applied in secure communication and image
encryption, information processing, life science, [5] to [10],
and so on.
Recently, chaos synchronization has been studied from
various angles and a variety of different synchronization
phenomena have been discovered, such as generalized
synchronization, [11] and [12], phase synchronization [13],
lag synchronization [14], anti-synchronization, [15] and [16],
observer-based synchronization [17] to [20], etc.
The purpose of this work is to determine a necessary and
sufficient conditions for the convergence to zero of the states
synchronization error between two non identical chaotic
continuous-time processes, [21].
The proposed stabilizing conditions for nonlinear continuous-
time hierarchical systems are based on the Borne and Gentina
practical criterion for stability study, [23] and [24], associated
to the Benrejeb arrow form matrix for system description, [26]
to [28]. It constitutes an extension of previous results on
synchronization studies of continuous two identical chaotic
systems, [4] and [25].
The paper is organized as following. In Section II, is proposed
an approach to design an nonlinear observer, effective and
systematic in achieving synchronization of continuous-time
chaotic systems, guarantying the asymptotic stability for the
synchronization errors, characterized, in the state space, by
an arrow form matrix. The implementation of the proposed

synchronization approach to two non identical chaotic systems
using two master-slave continuous-time chaotic Lorenz and
Rôssler systems is performed in Section III.

II. OBSERVER-BASED CONTINUOUS-TIME
SYNCHRONIZATION - BASIC IDEA

A proposed synchronization approach for a class of con-
tinuous time chaotic systems is applied in this section for two
non identical chaotic systems.
Consider the n-dimensional chaotic continuous-time master
system.
It is modeled as follows{

ẋm(t) = Amxm(t) + fm(xm(t)) + Vm

ym(t) = Cxm(t)
(1)

xm is the state vector, xm ∈ Rn, ym the output ym ∈ R of
the master system and C an (1× n) constant matrix.
We associate to this system a not identical slave system,
defined by{

ẋs(t) = Asxs(t) + fs(xs(t)) + Vs +Bu(t)

ys(t) = Cxs(t)
(2)

xs ∈ Rn and ys ∈ R are respectively the state vector and the
output of the slave system.
Am = {amij

} and As = {asij} are constant matrices, and
fm(xm(t)) and fs(xs(t)) nonlinear vectors.
Vm ∈ Rn et Vs ∈ Rn are constant vectors introduced in (1)
and (2).

Lot the synchronization error vector defined by

e(t) = xs(t)− xm(t) (3)

Using (1) and (2), the error system can be described by

ė(t) =

{
Asxs(t)−Amxm(t) + fs (xs (t))− fm (xm (t))

+Vs − Vm +Bu(t)

(4)
with B = In×n and the structure of the control law u(t),
retained in this case, on one hand by the output feedback
control law and, on the other hand, by compensation of the
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expression of the nonlinear observer of Luenberger represented
as follows

u(t) =

{
(As −Am)xs(t) + fm (xs (t))− fs (xs (t))

−Vs + Vm + L(.) (ym(t)− ys(t))

(5)
The vector L(.) = {li(.)} ∈ Rn of the following Luenberger
continuous-time observer parameters gain [29]

L(.) =
[
l1(.) · · · ln(.)

]T
, li ∈ R, i = 1, 2, ..., n (6)

has to be choosen to satisfy master-slave synchronization [1,
2] i.e.,

lim
t→+∞

ei(t) = lim
t→+∞

(xsi(t)− xmi(t)) = 0, ∀i = 1, ..., n

(7)
The substitution of the new control law (5) in the system (4)
leads to the representation of the error system as follows

ė(t) = Ame(t)−BL(.)Ce(t) + fm(xs(t))− fm(xm(t)) (8)

We can note that the choice of the output feedback control law
u(t) (5) returns the study of the synchronization of two non
identical chaotic systems to two identical ones.
For several chaotic systems, the expression fm(xs(t)) −
fm(xm(t)) can be factorized as follows, [30] and [31],

fm(xs(t))− fm(xm(t)) = Q(xm(t), xs(t))e(t) (9)

Q(xm(t), xs(t)) is a borned matrix with nonlinear elements.

Then, the error system can be rewritten as

ė(t) = A(xm(t), xs(t))e(t) (10)

with

A(xm(t), xs(t)) = Am +Q(xm(t), xs(t))−BL(.)C (11)

The following theorem 1, based on the use of Borne and
Gentina criterion, [22] and [23], associated to the specific
canonical Benrejeb arrow form matrix A(.) = {aij(.)}, [26]
to [28], gives sufficient conditions of complete synchronization
of slave (2) with master (1) systems.

Theorem 1: The process described by (10) converges
towards zero, if the matrix A(.), such that the matrix given
by (11) is in the arrow form matrix, if the following conditions
are satisfied

• the nonlinear elements are located only in either one
row or one column of the matrix A(.)

• the diagonal elements, aii(.) of the matrix A(.) are
chosen such that

aii(.) < 0 ∀ i = 1, 2,..., n− 1 (12)

• there exist ε > 0, such that

ann(.)−
n−1∑
i=1

|ani(.)ain(.)| a−1
ii (.) ≤ −ε (13)

Proof: The comparison system (14) of error
system (10), associated to the vectorial norm p(z) =

[ |z1| |z2| · · · |zn| ]
T
, z = [ z1 z2 · · · zn ]

T [28]

ż(t) = M(A(.))z(t) (14)

is such that the elements mij(.) of overvaluing system
matrix characteristic M(A(.)) are deduced from the matrix
A(.) ones, by substituting the off-diagonal elements by their
absolute values{

mii(.) = aii(.) ∀ i = 1, 2, ..., n

mij(.) = |aij(.)| ∀ i, j = 1, 2, ..., n, ∀i ̸= j
(15)

The error system (10) is then stabilized by the output
feedback law (5), if the matrix M(A(.)) is the opposite of
an M-matrix [28]. By the application of Borne and Gentina
stability criterion, the sufficient stability conditions, for ε > 0,
are the followings{

aii(.) < 0 ∀ i = 1, 2, ..., n− 1

(−1)
n
det(M(A(.))) ≥ ε

(16)

when nonlinear elements are isolated in one row of M(A(.))
matrix.
The development of the first member of the last condition
of (16)

(−1)n det(M(A(.))) = (−1)ann(.)

−
n−1∑
i=1

(|ani(.)ain(.)|)a−1
ii (.)(−1)n−1

n−1∏
j=1

ajj(.)


(17)

achieves easily the proof of the theorem 1.

This theorem 1 is used, in the next section, to synchronize
two coupled master-slave non identical chaotic systems.
The goal now is to synchronize (1) and (2) and, at the same
time, to design a parameter update law for nonlinear observer
gain L such that the error system is asymptotically stable
using (12) and (13) conditions of the theorem listed below.

III. APPLICATION TO NON IDENTICAL MASTER-SLAVE
CHAOTIC SYSTEMS

A. Proposed observer-based synchronization for coupled
Lorenz Rôssler chaotic systems

In this section, the performance of the proposed
synchronization approach is illustrate for coupled the
Lorenz system with the Rôssler system returning the study to
two identical chaotic Lorenz systems.
Consider the master Lorenz system given by [32]

ẋm1(t) = −axm1(t) + axm2(t)

ẋm2(t) = rxm1(t)− xm2(t)− xm1(t)xm3(t)

ẋm3(t) = −bxm3(t) + xm1(t)xm2(t)

(18)

a, b and r are three positive parameters of the Lorenz chaotic
system such that a = 10, b = 8/3 and r = 28. For this
parameters, the figure 1 shows the Lorenz system as a chaotic
attractor.

The description of such system can be reformulated, as
previously, in the state space as{

ẋm(t) = Am(.)xm(t) + fm(xm(t))

ym(t) = Cxm(t)
(19)
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Fig. 1. Dynamic attractor of the chaotic Lorenz system

with

Am(.) =

 −a a 0

r − xm3(t) −1 0

0 0 −b

 (20)

and

fm(xm(t)) =
[
0 0 xm1(t)xm2(t)

]T
(21)

Besides, let consider the slave Rôssler system described
by [33]


ẋs1(t) = −xs2(t)− xs3(t) + u1(t)

ẋs2(t) = xs1(t) + µxs2(t) + u2(t)

ẋs3(t) = ρ+ xs3(t)xs1(t)− ηxs3(t) + u3(t)

(22)

µ, ρ and η are three positive parameters such that µ =
0.398, ρ = 2 and η = 4. For this parameters, the figure 2
shows the Rôssler system as a chaotic attractor.
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Fig. 2. Dynamic attractor of the chaotic Rôssler system

The description of such system (2) can be reformulated, also,
in the state space as{

ẋs(t) = Asxs(t) + fs(xs(t)) + Vs + u(t)

ys(t) = Cxs(t)
(23)

with

As =

 0 −1 −1

1 µ 0

0 0 −η


fs(xs(t)) =

[
0 0 xs1(t)xs3(t)

]T
Vs =

[
0 0 ρ

]T
(24)

xm(t) = [ xm1(t) xm2(t) xm3(t) ]
T is the state vector of

the master system and xs(t) = [ xs1(t) xs2(t) xs3(t) ]
T

the state vector of a slave system.
The control law proposed for this slave Rôssler system such
that

u(t) =

{
(Am (.)−As)xs (t) + fm (xs (t))− fs (xs (t))

−Vs + L (.) (ym (t)− ys (t))

(25)
has to synchronize the non identical Lorenz and Rôssler
systems.
Consider the Luenberger continuous-time observer gain

L(.) = {li(.)}, ∀i = 1, 2, 3 (26)

which will return the study of the synchronization of two
non identical chaotic systems to two identical chaotic Lorenz
systems.
Let consider the synchronization error composant ei(t), be-
tween systems (19) and (23),

ei(t) = xsi(t)− xmi(t), ∀i = 1, 2, 3 (27)

leads to the error system description in the state space by

ė(t) = A(.)e(t) (28)

where A(.) is defined by (11).

and in the form

A(.) =

 −a− l1c1 a− l1c2 −l1c3
r − xm3(t)− l2c1 −1− l2c2 −l2c3
xm2(t)− l3c1 xs1(t)− l3c2 −b− l3c3


(29)

for Q(xm(t), xs(t)) defined by

Q(xm(t), xs(t)) =

 0 0 0

0 0 0

xm2(t) xs1(t) 0

 (30)

It comes the instantaneous characteristic matrix M (A (.)) of
the comparaison system

M (A (.)) = −a− l1c1 |a− l1c2| |l1c3|
|r − xm3

(t)− l2c1| −1− l2c2 |l2c3|
|xm2(t)− l3c1| |xs1(t)− l3c2| −b− l3c3


(31)

The choice of correction parameters l2, l3, c2 et c3 as following{
l2c3 = 0

xs1(t)− l3(.)c2 = 0
i.e.


c3 = 0

l3(.) =
xs1(t)

c2

(32)
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isolates all the nonlinearities of A(.) in it last column.

Synchronization is achieved when stabilization conditions are
satisfied using the conditions (ii) of the theorem 1, namely{

−1− l2c2 < 0

−b− l3c3 < 0
(33)

For this purpose, possible choices of l2 and c2 are the follow-
ings {

l2 = 28

c2 = 1
(34)

Finally, inequalities (12) are satisfed and (13) one becomes(
(−a− l1c1)− (|l1c3| |xm2(t)− l3c1|) (−b− l3c3)

−1

− (|a− l1c2| |r − xm3(t)− l2c1|) (−1− l2c2)
−1

)
< 0

(35)

Then, instantaneous gains l1 and c1, have to satisfy inequal-
ities (35). The appropriate solution, corresponding to the
matrices gain L(.) et C such as

L(.) =

 1

28

xs1(t)

 (36)

C =
[
1 1 0

]
(37)

guaranties the synchronization between state vectors of the
master and slave coupled non identical Lorenz and Rôssler
systems.

B. Numerical simulation results

In the next, simulation results are outlined which will
depict the synchronization in continuous-time system and its
application to two non identical Lorenz and Rôssler chaotic
systems.
The simulation results for the two coupled non identical Lorenz
and Rôssler systems, without observer gains, show, in figure 3,
the evolutions of states variables with different amplitudes,
and figure 4 shows chaotic error dynamics when observer is
desactived.
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and Rôssler systems when the controller is desactived
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The figure 5 shows the state vector of the slave Rôssler
system achieving synchronism with state vectors of the master
Lorenz system, and the figure 6 the time response of the
synchronization errors; one can observe that e1(t), e2(t) and
e3(t) converges to zero after the activation of the proposed
nonlinear observer.
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Fig. 5. Evolutions of state variables of the coupled master-slave Lorenz and
Rôssler systems when proposed observer is activated
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IV. CONCLUSION

In this paper, suitable stabilization conditions are proposed
for observer-based synchronization of chaotic continuous-time
systems. Two main results have been obtained. The first one
guaranties synchronization between master and slave systems
based on the use of a Borne and Gentina technique associated
to the Benrejeb arrow form matrix. The second ones, it is
worth noting that the proposed nonlinear observer is easy
to apply to two non identical master-slave chaotic systems.
Numerical simulations illustrate the influence of the control
gains parameters on the dynamic performances then the
efficiency of the proposed approach.
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régime transitoire de systèmes complexes chaotiques couplés avec et
sans observateurs, Thse de Doctorat ENIT, 2014.

[22] P. Borne, P. Vanheeghe and E. Duos, Automatisation des processus dans
l’espace d’état, Ed. Technip, Paris, 2007.

[23] J. C. Gentina et P. Borne. Sur une condition d’application du critère de
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